item_characteristic_curve
item_characteristic_curve(model, item, response)
item_characteristic_curve(model, item)
Create a plot of the item characteristic curve for response
of item
.
An item characteristic curve plots the probability for response
of item
given the person ability θ.
If response
is omitted, the default plot behaviour depends on model
:
For models where
response_type(model) == Dichotomous
the item characteristic curve for response = 1 is plotted, i.e. the probability of a correct response.For models where
response_type(model) <: Union{Nominal, Ordinal}
all category characteristic curves are plotted.
Plot attributes
Generic
color
: The color of the item characteristic curve.uncertainty_color
: The color of the displayed uncertainty information. For plots with uncertainty intervals this is the color of the confidence band. For plots with sample based uncertainty information this is the line color of the samples.theta
: The values oftheta
for which to plot the item characteristic curve. default: -3.0:0.01:3.0.show_data
: Overlay observed data in the plot. Ability estimates are aggregated according tobins
. For models withestimation_type(model) == SamplingEstimate
the posterior means of ability estimates are used for binning. default: false.bins
: The number of bins for the observed data. default: 6.
Specific
Models with SamplingEstimate
samples
: The number of samples to plot. default:1000
uncertainty_type
: Changes how the uncertainty of the estimate is displayed. Ifuncertainty_type = :samples
, then iterations from the MCMC estimation are plotted. Ifunvertainty_type = :interval
, then uncertainty intervals are plotted. default::samples
quantiles
: The lower and upper quantile for uncertainty intervals. default:(0.1, 0.9)
aggregate_fun
: A function that aggregates MCMC samples. The provided function must take a vector as input and output a scalar value. Ifaggregate_fun = nothing
no aggregate is plotted. default: mean
From ItemResponseFunctions.jl
Dichotomous items
using CairoMakie
using ItemResponsePlots
using ItemResponseFunctions
item = (a = 1.87, b = 0.22)
item_characteristic_curve(TwoPL, item)
using CairoMakie
using ItemResponsePlots
using ItemResponseFunctions
item = (a = 0.65, b = -0.3)
item_characteristic_curve(TwoPL, item, 0)
Polytomous items
using CairoMakie
using ItemResponsePlots
using ItemResponseFunctions
item = (a = 0.9, b = 0.0, t = (0.0, -0.2, 1.0))
item_characteristic_curve(GPCM, item)
using CairoMakie
using ItemResponsePlots
using ItemResponseFunctions
item = (a = 1.8, b = 0.1, t = (0.0, 1.0))
item_characteristic_curve(GPCM, item, 2)